MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.

MELNIK, M. (1982). Coord. Chem. Rev. 42, 259-293.

MELNÍK, M., ANDEROVÁ, M. & HOĽKO, M. (1982). Inorg. Chim. Acta, 67, 117-122. SHARROCK, P., MELNÍK, M., BÉLANGER-GARIÉPY, F. & BEAUCHAMP, A. L. (1985). Can. J. Chem. 63, 2564–2570.

- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SIMONOV, YU. A. & MALINOVSKY, T. I. (1970). Sov. Phys. Crystallogr. 15, 310–319.
- YABLOKOV, J. V., MOSINA, M. N., SIMONOV, YU. A., MILKOVA, L. N. & ABLOV, A. V. (1978). *Zh. Strukt. Khim.* 19, 42–51.

Acta Cryst. (1988). C44, 649-652

Structures of Three α-Chloro-γ-lactones

BY MASOOD PARVEZ, THOMAS K. HAYES AND STEVEN M. WEINREB

Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA

(Received 27 July 1987; accepted 20 October 1987)

4-Chloro-2-oxatricyclo[4.2.1.0^{4,8}]nonan-3-Abstract. one, (2), $C_8H_9ClO_2$, $M_r = 172.61$, monoclinic, $P2_1/c$, a = 6.442 (4), b = 10.063 (1), c = 11.758 (2) Å, $\beta =$ 95.82 (3)°, $V = 758 \cdot 3$ (7) Å³, Z = 4, $D_r =$ 1.51 Mg m^{-3} , λ (Mo K α) = 0.71073 Å, $\mu =$ 0.442 mm^{-1} , F(000) = 360, T = 293 K, R = 0.035 for1815 reflections with $I > 3\sigma(I)$. 4-Chloro-2-oxatri $cyclo[5.2.1.0^{4,9}]$ decan-3-one, (4), $C_9H_{11}ClO_2$, $M_r =$ 186.64, monoclinic, $P2_1/n$, a = 6.148(1), b = 11.150(4), c = 12.577(2) Å, $\beta = 100.95(1)^\circ$, V =846.5 (6) Å³, Z = 4, $D_x = 1.46 \text{ Mg m}^{-3}$, $\lambda(\text{Mo } K\alpha) =$ $0.71073 \text{ Å}, \mu = 0.401 \text{ mm}^{-1}, F(000) = 392, T =$ 293 K, R = 0.045 for 1321 reflections with $I > 3\sigma(I)$. (\pm) -2a α -Chloro-3,4,4a α ,5,6,7,7a α ,7b α -octahydro-2aHindeno[7,1-*b*,*c*]furan-2-one, (6), $C_{10}H_{13}CIO_2$, $M_r =$ 200.67, monoclinic, $P2_1/n$, a = 8.120 (2), b =9.454 (3), c = 12.624 (4) Å, $\beta = 97.26$ (2)°, V =961.3 (9) Å³, Z = 4, $D_x = 1.39 \text{ Mg m}^{-3}$, λ (Mo Ka) = 0.71073 Å, $\mu = 0.358$ cm⁻¹, T = 293 K, F(000) = 424, R = 0.036 for 1018 reflections with $I > 3\sigma(I)$. In all three compounds, the bond lengths are unexceptional, the angles in the five-membered rings are significantly smaller than tetrahedral values and the angles in the six-membered rings [(4) and (6)] are somewhat enlarged. In (2), the three five-membered rings all have envelope conformations. In (4), the five-membered rings have envelope conformations and the six-membered ring is in a twist boat conformation. In (6), the five-membered rings also have envelope conformations while the six-membered ring is a chair which is slightly distorted owing to its fusion to two five-membered rings.

Introduction. Recently we reported methodology for the selective formation of carbocyclic α,γ -dichloro-esters and/or annulated α -chloro- γ -lactones via

0108-2701/88/040649-04\$03.00

transition-metal-promoted intramolecular radical cvclizations of olefinic α, α -dichloroesters and acids (Haves, Freyer, Parvez & Weinreb, 1986). Several y-lactones have been produced using this methodology, including simple cyclopentane and cyclohexane derivatives, along with bridged and fused tricyclic systems. X-ray studies have been carried out on some of these a-chloroy-lactones to confirm structural assignments made by NMR, and to establish unambiguously stereochemical relationships. Cyclization of 3-(3-cyclopentenyl)-2,2dichloropropionic acid (1) with $1.2 \mod 6$ RuCl₂-(PPh₃)₃ gave bridged lactone (2) in 88% yield. Likewise, lactone (4) was synthesized (88% yield) from 3-(3-cyclohexenyl)-2,2-dichloropropionic acid (3) and $2 \cdot 2 \mod \%$ of catalyst. The fused bicyclic lactone (6) was prepared from 4-(2-cyclohexenyl)-2,2-dichlorobutyric acid (5) using 1.5 mol% of $\text{RuCl}_2(\text{PPh}_3)_3$ in 46% yield.

© 1988 International Union of Crystallography

Table 1. Summary of data collection and structure refinement parameters

	(2)	(4)	(6)
Crystal size (mm)	$0.35 \times 0.45 \times 0.90$	0.30×0.40×0.55	0.18×0.27×0.36
Reflections used for	• • • • • • • • • • • • •		
cell constants			
number	25	25	25
Arange (°)	10-18	10-15	10-20
Scan type	w/2A	$\omega/2\theta$	$\omega/2\theta$
Scan width (°)	$(0.80 \pm 0.35 \tan \theta)$	$(1.00+0.35tan\theta)$	$(1.00+0.35tan\theta)$
Variable scan speed (min ⁻¹)	0.6-5.5	1.0-5.5	0.8-5.5
Max scan time per	0.0.5.5	1000	0000
reflection (s)	60	100	100
Pange for data collection	00	100	
	2_30	2_25	2_25
6()	0/0	0/7	0/0
n k	0/14	0/13	0/11
K I	16/16	14/14	15/15
Created deeper (%)	-10/10	1.0	27.7
Crystal decay (%)	9.9	1.9	21.1
Empirical absorption correction	0.0076	0.0000	0.0004
max. transmission coefficient	0.9975	0.9988	0.99994
min. transmission coefficient	0.9014	0.9244	0.9318
Reflections measured	2602	1704	1010
total	2503	1/24	1919
unique	2197	1480	1688
observed $[I > 3\sigma(I)]$	1819	1321	1018
Reflection-averaging			
agreement on F	0.008	0.016	0.022
R, wR	0.035, 0.051	0.045, 0.082	0.036, 0.048
Data/parameter ratio	13-3	8.6	6.0
Weighting scheme	$w=1/(\sigma^2 F + 0.01F^2)^{1/2}$	$w = 1/(\sigma^2 F + 0.01 F^2)^{1/2}$	$w = 1/(\sigma^2 F + 0.04F^2)^{1/2}$
Max. shift/e.s.d. ratio (Δ/σ)	<0.1	<0.02	<0.01
Min./max. height in final $\Delta \rho$ (e Å ⁻³)	-0.25/0.26	-0.20/0.27	-0.25/0.30
Contaction in the first of the second	1.02	0.96	1 72

Experimental. For the three structures, accurate cell dimensions were obtained by least-squares refinement of the setting angles of 25 reflections measured on an Enraf-Nonius CAD-4 diffractometer using graphite-monochromatized Mo $K\alpha$ radiation. In each case intensities were collected by the $\omega/2\theta$ scanning procedure. The stability of each crystal was monitored by measurement of three reflections at regular intervals; the data were corrected for decay by appropriate scaling. All data were corrected for Lorentz and polarization effects and for absorption (North, Phillips & Mathews, 1968). A summary of data collection and structure refinement parameters for the three structures is given in Table 1.

Table 3. Bond distances (Å), angles (°) and cis torsionangles (°)

Doserveu Pofloation n	(1 > 30(1))	1019	1321	1018		(2)	(4)	(6)
Renection-a	veraging	0.009	0.016	0.022		(2)	(4)	(6)
agreemen	it on r	0.000	0.010	0.022	Cl-C(2)	1.776 (1)	1.785 (2)	1.794 (3)
K, WK D-1- /		12 2	0.045, 0.082	6.0	O(1)-C(1)	1.339 (1)	1.335 (3)	1.330 (3)
Data/paran	ieter ratio	13.3	0.0	0.0	O(1)-C(4)	1-468 (1)	1-464 (3)	1-461 (3)
weignung s	cneme	$w = 1/(\sigma r + 1)/2$	$w = 1/(\sigma r + 1)/2$	$w = 1/(\sigma r + 1)/2$	O(2)-C(1)	1.198 (1)	1 · 198 (3)	1-192 (3)
		0.017-)	0.017-2)**	0.041-)"-	C(1)-C(2)	1.511 (1)	1.514 (3)	1-495 (4)
Max. shift/e	e.s.d. ratio (Δ/σ)	<0.1	<0.02	<0.01	C(2)-C(3)	1.531 (1)	1.533 (3)	1.523 (3)
Min./max. h	height in	-0.25/0.26	-0.20/0.27	-0.25/0.30	C(2)-C(8)	1-554 (1)		
final $\Delta \rho$ (e	e A ⁻³)		0.07	1 - 2	C(2)–C(9)		1.543 (3)	
Goodness o	i ni, S	1.92	0.80	1.73	C(2)-C(10)			1.505 (4)
					C(3)-C(4)	1.535 (1)	1.539 (3)	1.516 (4)
			••		C(3)-C(7)	1-522 (1)		
Table 2	2. Final fro	actional coo	rdinates an	$d B_{ea}$'s with	L C(3)-C(8)		1.522 (3)	1.542 (4)
	-	e d'e in nara	nthacas	C4	C(4)-C(5)	1.523 (1)	1.509 (3)	1-493 (4)
	е.	s.u. s in pure	mmeses		C(5)-C(6)	1.531 (1)	1.525 (4)	1.505 (4)
					C(6)-C(7)	1.523 (1)	1.541 (3)	1-497 (5)
	x	У	Z	$B_{eq}^{*}(A^2)$	C(6)-C(8)	1-529 (1)		
Compound	d (2)				C(7)–C(8)		1.524 (3)	1.517 (4)
ci .	0.24253(7)	0.09294 (4)	0.93930(3)	4.363 (8)	C(7)—C(9)		1-529 (3)	
0(1)	0.5897 (2)	0.3691 (1)	0.8422(1)	4.62 (2)	C(8)C(9)			1.511 (5)
$\tilde{O}(2)$	0.6367(2)	0.2567(2)	1.0066 (1)	5.59 (3)	C(9)-C(10)			1.513 (4)
C	0.5271(2)	0.2884(2)	0.9226(1)	3.83 (3)				
C(2)	0.3016(2)	0.2531(1)	0.8879(1)	2.90 (2)	C(1) = O(1) = C(4)	110.15 (5)	111.6 (2)	111.3 (2)
C(3)	0.2780(2)	0.2655(1)	0.7575(1)	3.09 (2)	C(1)-C(1)-O(2)	123.30 (7)	122-4 (3)	122-2 (3)
C(4)	0.4218(2)	0.3860 (2)	0.7491(1)	3.78 (3)	O(1)-C(1)-C(2)	107.58 (6)	109-4 (2)	110-5 (2)
C(5)	0.2831(2)	0.5042(2)	0.7705(1)	4.14 (3)	O(2)-C(1)-C(2)	· 129·09 (7)	128-2 (2)	127-3 (3)
C(6)	0.0917(2)	0.4374(2)	0.8129(1)	3.50 (3)	C1-C(2)-C(1)	110.76 (5)	108-9(1)	106-0 (2)
C(7)	0.0594(2)	0.3218(2)	0.7295(1)	3.49 (3)	Cl-C(2)-C(3)	114.32 (4)	113-6(1)	114-6 (2)
C(8)	0.1566(2)	0.3650(2)	0.9252(1)	3.40 (2)	C1-C(2)-C(8)	113-93 (4)		
0(0)	0.500 (2)	0 0000 (2)	0 /202 (1)	0 10 (2)	Cl-C(2)-C(9)		111.7 (2)	
Compound	d (4)				C1-C(2)-C(10)			113.0 (2)
CI	0.37960 (9)	0.05645 (5)	0.36293 (4)	5-26(1)	C(1)-C(2)-C(3)	104-28 (5)	105-3 (2)	104.6 (2)
O(1)	0-5541 (2)	0.3606 (1)	0·2832 (1)	3.81 (2)	C(1)-C(2)-C(8)	110-04 (5)		
O (2)	0.2793 (3)	0.3261(1)	0.3710(1)	5.77 (3)	C(1)-C(2)-C(9)		112-2 (2)	
cii	0.4018 (3)	0.2904(2)	0.3144(1)	3.56 (3)	C(1)-C(2)-C(10)			111-1 (2)
$\tilde{C}(2)$	0.4083 (3)	0.1674 (1)	0.2642(1)	3.22 (3)	C(3)-C(2)-C(8)	102-85 (5)		
C(3)	0-6306 (2)	0.1617(1)	0.2261(1)	3.17 (3)	C(3)-C(2)-C(9)	•	105-0 (2)	
C(4)	0.6824 (2)	0.2956 (2)	0.2149 (1)	3.45 (3)	C(3)-C(2)-C(10)			107.3 (2)
C(5)	0-6226 (3)	0.3412(2)	0.1001 (1)	4.38 (4)	C(2)–C(3)–C(4)	97-40 (5)	101-6 (2)	103.6 (2)
C(6)	0-4063 (3)	0.2906 (2)	0.0362(1)	4.40 (4)	C(2)-C(3)-C(7)	104.05 (5)		
C(7)	0.3589 (3)	0.1609 (2)	0.0673 (1)	3.75 (3)	C(2)-C(3)-C(8)		104-2 (2)	104-6 (2)
C(8)	0.5759 (3)	0-0993 (1)	0.1166 (1)	3.58 (3)	C(4) - C(3) - C(7)	104.09 (6)		
C(9)	0.2313(3)	0.1530(2)	0.1602 (2)	3.91 (4)	C(4)-C(3)-C(8)		112.0 (2)	116-9 (2)
- (-)				• •	O(1)-C(4)-C(3)	105-35 (6)	106-4 (2)	105-1 (2)
Compound	d (6)				O(1)-C(4)-C(5)	111.59 (7)	109-5 (2)	108-4 (2)
Cl	0-38760 (9)	0.91217 (8)	0.83351 (7)	6.12 (2)	C(3)-C(4)-C(5)	103.77 (5)	113-4 (2)	116-6 (2)
O(1)	0-6795 (2)	0.6727 (2)	0.7579(1)	5.09 (4)	C(4) - C(5) - C(6)	102.50 (6)	114-2 (2)	112.6 (3)
O(2)	0-4371 (3)	0.5861 (2)	0.7881 (2)	7.70 (6)	C(5)-C(6)-C(7)	100.79 (6)	113.7 (2)	110.5 (3)
C(1)	0.5432 (3)	0.6731 (3)	0.8062 (2)	4.68 (6)	C(5)-C(6)-C(8)	109-39 (6)		
C(2)	0.5488 (3)	0.7916 (3)	0.8850 (2)	3.90 (5)	C(7)-C(6)-C(8)	101.52 (6)		
C(3)	0.7240 (3)	0.8508 (3)	0.8897 (2)	3.88 (5)	C(3)-C(7)-C(6)	94.70 (5)		
C(4)	0.7829 (3)	0.7963 (3)	0.7880 (2)	4.40 (6)	C(6)-C(7)-C(8)		109-5 (2)	112.9 (2)
C(5)	0.9608 (4)	0.7529 (3)	0.7953 (3)	5-79 (7)	C(6)-C(7)-C(9)		113-4 (2)	
C(6)	1.0163 (3)	0.6674 (4)	0.8939 (3)	5.73 (7)	C(8)-C(7)-C(9)		101-5 (2)	
C(7)	0.9938 (4)	0.7501 (3)	0.9923 (3)	6.15 (8)	C(2)-C(8)-C(6)	102.75 (5)		
C(8)	0.8153 (4)	0.7949 (3)	0.9960 (2)	5.22 (7)	C(3)-C(8)-C(7)		100-9 (2)	115-2 (2)
C(9)	0.7017 (4)	0.6819 (4)	1.0306 (2)	6-45 (8)	C(3)-C(8)-C(9)	•		104.5 (2)
C(10)	0-5289 (4)	0.7375 (3)	0.9948 (2)	5-92 (8)	C(7)-C(8)-C(9)			115-6 (3)
* 5	4 20(1.1)	120(0.0)	20(2.2)		C(2)-C(9)-C(7)		105+1 (2)	
* B ^{ed} =	$\frac{3}{3}(a^{2}B(1,1)) +$	$D^{-}B(2,2) +$	$C^{-B}(3,3) + ai$	$(\cos y) B(1,2) +$	-C(8)-C(9)-C(10)			104-2 (3)
$ac(\cos\beta)B$	$(1,3) + bc(\cos \alpha)$)B(2,3)].			C(2) - C(10) - C(9)			101-0 (2)

Table 3 (cont.)

	(2)	(4)	(6)
C(2) - C(1)O(2)	-31.8(1)	-43.5(2)	-69.0 (3)
C(4)O(1) - C(1)C(2)	-3.2(1)	-2.2(3)	-6.2(3)
O(1)C(1) - C(2)C(3)	26.8(1)	-16.6(3)	-8.5(3)
O(1)C(2)-C(3)C(4)	-36.7(1)	-22.7(3)	18.7 (3)
C(2)C(3)-C(4)O(1)	35.2 (1)	21.8(3)	-22.3(3)
C(3)C(4) - O(1)C(1)	-21.5(1)	-13.0 (3)	18.4(3)
C(7)C(3)-C(4)C(5)	24.4(1)		10 (0)
C(3)C(4) - C(5)C(6)	11.3 (1)		
C(4)C(5)-C(6)C(7)	-43.2(1)		
C(5)C(6)-C(7)C(3)	56.6(1)		
C(6)C(7)-C(3)C(4)	-49.6(1)		
C(8)C(2)-C(3)C(7)	-28.4 (1)		
C(2)C(3)-C(7)C(6)	51.9(1)		
C(3)C(7)-C(6)C(8)	-56-0(1)		
C(7)C(6)-C(8)C(2)	39-9(1)		
C(3)C(2)–C(8)C(6)	-7.0(1)		
C(8)C(3)-C(4)C(5)		11.9 (3)	-28.0(3)
C(3)C(4) - C(5)C(6)		39.3 (3)	43.7 (3)
C(4)C(5)-C(6)C(7)		-33-2 (3)	−59 •0 (3)
C(5)C(6)-C(7)C(8)		-23.8 (3)	58.7 (3)
C(6)C(7)-C(8)C(3)		72.2 (3)	-42.8 (3)
C(4)C(3)–C(8)C(7)		-66-4 (3)	27.2 (3)
C(9)C(2)-C(3)C(8)		-20.6 (3)	
C(2)C(3)-C(8)C(7)		42.6 (3)	
C(3)C(8)-C(7)C(9)		-47.9 (3)	
C(8)C(7)–C(9)C(2)		35.3 (3)	
C(3)C(2)C(9)C(7)		-9.2 (3)	
C(10)C(2)-C(3)C(8)			13.9 (3)
C(2)C(3) - C(8)C(9)			13-1 (3)
C(3)C(8) - C(9)C(10)			-35-3 (3)
C(8)C(9) - C(10)C(2)			43-2 (3)
C(3)C(2) = C(10)C(9)			-35-1 (3)

The structures were solved by the heavy-atom method. The structures were refined by full-matrix least-squares calculations on Fs, initially with isotropic and finally with anisotropic temperature factors for the non-H atoms. At intermediate stages in the refinements difference maps revealed all H atoms in the three structures which were included in the subsequent cycles with isotropic thermal parameters. Refinement converged with R = 0.035, 0.045 and 0.036 and wR = 0.051, 0.082 and 0.048 for (2), (4) and (6), respectively. In the refinement cycles, weights were derived from the counting statistics. Scattering factors were those of Cromer & Mann (1968) and Stewart, Davidson & Simpson (1965) and allowance was made for anomalous dispersion (Cromer & Liberman, 1970). The computer programs used were part of the Enraf-Nonius Structure Determination Package (B. A. Frenz & Associates, Inc., 1985). The final fractional coordinates with e.s.d.'s are given in Table 2* and molecular dimensions are in Table 3. Fig. 1 shows the ORTEP (Johnson, 1976) drawings of the molecular structures of (2), (4) and (6) with the crystallographic numbering schemes while the crystal structures are depicted in Figs. 2-4.

Discussion. The structure of (2) is comprised of three five-membered rings A, B and C which have C(3)-,

C(7)- and C(7)-envelope conformations, respectively. The structure of (4) consists of two five-membered rings, A and C, with C(3)- and C(8)-envelope conformations, respectively, and a six-membered ring B which adopts a twist boat conformation. The structure of (6) is also composed of two five-membered rings, A and C, which have C(3)- and C(9)-envelope conformations and a six-membered ring B which displays a distorted chair conformation.

The bond distances in the three structures are in excellent agreement and are within the limits expected for the corresponding bonds, *e.g.* C–Cl 1.776 (1)–1.794 (3), C=O 1.192 (3)–1.198 (1), C_{sp²}–O 1.330 (3)–1.339 (1), and C_{sp³}–O 1.461 (3)–1.468 (1) Å; C_{sp²}–C_{sp³} 1.495 (4) Å in (6) is, however,

Fig. 1. ORTEP drawings of the molecular structures of (a) (2), (b) (4), and (c) (6) with crystallographic numbering schemes. The ellipsoids correspond to 50% probability contours of atomic displacement.

^{*} Lists of strucutre factors, anisotropic temperature factors and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44479 (54 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Fig. 2. Stereoview of the crystal packing in the unit cell for (2).

Fig. 3. Stereoview of the crystal packing in the unit cell for (4).

Fig. 4. Stereoview of the crystal packing in the unit cell for (6).

significantly shorter than the corresponding bond in (2) and (4), 1.511 (1) and 1.514 (3) Å, respectively. The average C_{sp^3} - C_{sp^3} bond lengths in (2) [1.531 (1), range 1.522 (1)-1.544 (1) Å] and (4) [1.529 (3), range 1.509 (3)-1.543 (3) Å] agree very well while those in (6) [1.512 (4), range 1.493 (4)-1.542 (4) Å] are slightly shorter than those in the other two structures.

The endocyclic bond angles in the five-membered rings in all three structures are significantly smaller than their expected values. Ring A in (2) exhibits significantly smaller angles than the other two structures, e.g. angles C(1)-O(1)-C(4), O(1)-C(1)-C(2) and C(2)-C(2)C(3)-C(4) in the three structures are, respectively, 110.15(5), 107.58(6) and $97.40(5)^{\circ}$ in (2), 111.6(2), 109.4(2) and $101.6(2)^{\circ}$ in (4) and 111.3(2), 110.5 (2) and 103.6 (2)° in (6). With the exception of C(3)-C(8)-C(7) [100.9 (2)°] in ring B in (4), the angles are in the range 109.5 (2)-114.2 (2)°. The angles in ring B of fused lactone (6) are larger [range 110.5 (3)-116.9 (2)°] than those observed in ring B in bridged lactone (4). The crystals of the three compounds consist of discrete molecules separated by normal van der Waals distances (Figs. 2-4).

References

- B. A. FRENZ & ASSOCIATES, INC. (1985). SDP Structure Determination Package. College Station, Texas, USA, and Enraf-Nonius, Delft, The Netherlands.
- CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 1891-1898.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321–324.
- HAYES, T. K., FREYER, A. J., PARVEZ, M. & WEINREB, S. M.
- (1986). J. Org. Chem. 51, 5503–5505.
- JOHNSON, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.

Acta Cryst. (1988). C44, 652–654

Structure of the Sodium Salt of Penicillanic Acid

BY VÉRONIQUE GIBON, BERNADETTE NORBERG, GUY EVRARD AND FRANÇOIS DURANT

Laboratoire de Chimie Moléculaire Structurale, Facultés Universitaires Notre-Dame de la Paix, Rue de Bruxelles 61, B-5000 Namur, Belgium

(Received 11 May 1987; accepted 1 December 1987)

Abstract. Na⁺.C₈H₁₀NO₃S⁻, $M_r = 223 \cdot 2$, orthorhombic, $P2_12_12_1$, a = 10.640 (16), b = 15.093 (25), c = 5.982 (26) Å, V = 960.6 Å³, Z = 4, $D_x = 1.54$ g cm⁻³, Cu K α , $\lambda = 1.54178$ Å, $\mu = 26.86$ cm⁻¹, F(000) = 460.0, T = 293 K, R = 0.04 for 522 observed reflexions. The conformation of this penicillin is C3, with the α -CH₃ in pseudo-equatorial, and the β -CH₃ and the C(3) substituent in pseudo-axial positions. This geometry is

0108-2701/88/040652-03\$03.00

© 1988 International Union of Crystallography